Volume 9, Issue 1, March 2021, Page: 23-33
Differential Expression Profiles of Mitogenome Associated MicroRNAs Among Colorectal Adenomatous Polyps
LaShanale Wallace, Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
Karen Aikhionbare, College of Science and Mathematics, Augusta University, Augusta, Georgia, USA
Saswati Banerjee, Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
Katie Peagler, Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
Mareena Pitts, Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
Xuebiao Yao,
Felix Aikhionbare, Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
Received: Jan. 1, 2021;       Accepted: Jan. 19, 2021;       Published: Jan. 25, 2021
DOI: 10.11648/j.crj.20210901.14       View        Downloads  
Colorectal tumors are mostly of epithelial origin and represent a wide spectrum of neoplasms. About 97% of colorectal cancer originating from benign lesions of adenomatous polyps are adenocarcinomas. Reactive oxygen species (ROS) generating from mitochondrial DNA (mtDNA) mutations and microRNAs (miRNAs) are associated with oncogene and tumor suppressor genes regulation which are known to parallel the tissue abnormalities involved with tumorigenesis such as colorectal adenoma to adenocarcinoma. However, the differential expression patterns of mitochondrial associated microRNAs (referred as MitomiRs) among colorectal adenomatous polyps progression is yet to be determined. Thus, the aim of this study was to determine the differential expressions profiles of MitomiRs (miR-24, miR-181, miR-210, miR-21 and miR378) in patients with colorectal adenomatous polyps tissues in correlation with clinicopathological tumor architectures of tubular, tubulovillous, villous adenomas and adenocarcinomas. Isolation of mitochondria RNA from colorectal adenomatous polyps, adenocarcinomas, and normal adjacent tissue samples was performed and assessed for mitochondrial associated miRNAs expression differences using quantitative reverse transcription PCR. Data from this study demonstrates that mitochondria genome expression of mitomiRNAs; miR-24, miR-181, miR-210, miR-21 and miR-378 in colorectal tissue samples varies among the adenomatous polyps. Expression of mitomiRNAs 24, 181, 210 and 378 progressively increased from the precancerous of adenomatous polyps to adenocarcinoma. In addition, miR-210 and miR-181 expression increased 3 folds in villous adenomas and greater than 3 folds increased in miR378 in adenocarcinoma (p < 0.005) when compared to tubular adenoma. Meanwhile, miR-21 increased progressively in adenoma tissues but decreased almost 2.5 folds in adenocarcinomas when compared to villous adenoma tissues (p < 0.001). These results suggest mitomiRs may regulate important mitochondrial functional pathways leading to a more favorable environment for transformation or progression of colorectal adenomatous polyps into adenocarcinomas.
Colorectal Adenomas, Mitochondrial microRNA (Denoted: mitomiRNAs), Reactive Oxygen Species, CRC Tissues
To cite this article
LaShanale Wallace, Karen Aikhionbare, Saswati Banerjee, Katie Peagler, Mareena Pitts, Xuebiao Yao, Felix Aikhionbare, Differential Expression Profiles of Mitogenome Associated MicroRNAs Among Colorectal Adenomatous Polyps, Cancer Research Journal. Vol. 9, No. 1, 2021, pp. 23-33. doi: 10.11648/j.crj.20210901.14
Copyright © 2021 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019, 14 (2): 89–103.
Bujanda, L.; Cosme, A.; Gil I.; Juan, I.; Arenas-Mirave JI, Malignant colorectal polyps. World J Gastroenterol. 2010; 16, (25).
Munteanu, I.; Mastalier B. Genetics of colorectal cancer. J Med Life. 2014; 7 (4), 507–511.
Sun, D.; Yu, F.; Ma, Y.; Zhao, R.; Chen, X.; Zhu, J.; Zhang, CY.; Chen, J. Z,; Hang, J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). The Journal of biological chemistry. 2013, 288 (13), 9508-9518.
Kent, O.; Mendell, J.; Rottapel, R. Transcriptional Regulation of miR-31 by Oncogenic KRAS Mediates Metastatic Phenotypes by Repressing RASA1. Molecular Cancer Research: MCR 2016, 14 (3), 267-277.
Catalanotto C.; Cogoni C.; Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci. 2016, 17 (10): 1712.
Boeckx N.; Op de Beeck K.; Beyens M.; Deschoolmeester V.; Hermans C.; De Clercq P.; Garrigou S.; Normand C.; Monsaert E.; Papadimitriou K et al. Mutation and Methylation Analysis of Circulating Tumor DNA Can Be Used for Follow-up of Metastatic Colorectal Cancer Patients. Clinical Colorectal Cancer 2018. 17 (2), e369-e379.
Bienertova-Vasku J.; Sana J.; Slaby O. The role of microRNAs in mitochondria in cancer. Cancer Letters. 2013, 336 (1), 1–7.
Strubberg A.; Madison B. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Disease Models & Mechanisms. 2017, 10 (3): 197-214.
Clancy C.; Joyce M.; Kerin M. The use of circulating microRNAs as diagnostic biomarkers in colorectal cancer. Cancer Biomarkers. 2015, 15 (2): 103-113.
Kim N.; Cha Y.; Kang S.; Lee Y.; Lee I.; Cha S.; Ryu J.; Na J.; Park C.; Yoon H.; et al. p53 regµlates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013, 12 (10): 1578-1587.
Nagel R.; le Sage C.; Diosdado B.; van der Waal M..; Oude Vrielink J.; Bolijn A.; Meijer G.; Agami R. Regulation of the Adenomatous Polyposis Coli Gene by the miR-135 Family in Colorectal Cancer. Cancer Research. 2008, 68 (14): 5795.
Yang J.; Ma D.; Fesler A.; Zhai H.; Leamniramit A.; Li W.; Wu S.; Ju J. Expression analysis of microRNA as prognostic biomarkers in colorectal cancer. Oncotarget. 2017, 8 (32): 52403-52412.
Chen Z.; Li Y.; Zhang H.; Huang P.; Luthra R. Hypoxia-regµlated microRNA-210 modµlates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010, 29 (30): 4362-4368.
Nijhuis A.; Thompson H.; Adam J.; Parker A.; Gammon L.; Lewis A.; Bundy J.; Soga T.; Jalaly A.; Propper D.; et al. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5 fluorouracil resistance. Human Molecµlar Genetics. 2017, 26 (8): 1552-1564.
Thµlasingam S.; Massilamany C.; Gangaplara A.; Dai H.; Yarbaeva S.; Subramaniam S.; Riethoven J.; Eudy J.; Lou M.; Reddy J. miR-27b*, an oxidative stress-responsive microRNA modµlates nuclear factor-kB pathway in RAW 264.7 cells. Molecµlar and Cellµlar Biochemistry. 2011, 352 (1-2): 181-188.
Shaughnessy D.; McAllister K.; Worth L.; Haugen A.; Meyer J.; Domann F.; Van H.; Mostoslavsky R.; Bµltman S.; Baccarelli A.; et al. Mitochondria, energetics, epigenetics, and cellµlar responses to stress. Environ Health Perspect. 2014, 122 (12): 1271-1278.
Adams G.; Mehrabi S.; Vatcharapijarn Y,; Iyamu O.; Akwe J.; Grizzle W.; Yao X.; Aikhionbare F. Frequencies of mtDNA mutations in primary tissue of colorectal adenopolyps. Frontiers in Bioscience (Elite edition). 2013, 5: 809-813.
Aikhionbare F.; Khan M.; Carey D.; Okoli J.; Go R. Is cumµlative frequency of mitochondrial DNA variants a biomarker for colorectal tumor progression? Molecµlar Cancer. 2004, 3: 30-30.
Eslamizadeh S.; Heidari M.; Agah S;, Faghihloo E.; Ghazi H.; Mirzaei A.; Akbari A.; The role of microRNA signature as diagnostic biom
Raisch J.; Darfeuille-Michaud A.; Nguyen H. Role of microRNAs in the immune system, inflammation and cancer. World Journal of Gastroenterology: WJG. 2013, 19 (20): 2985-2996.
Mingxi Z.; Linlin Z.; Liangping L.; Kang C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cellular & Molecular Biology Letters. 2017, 22 (1): 12.
Peltier HJ.; Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008; 14 (5): 844-852.
Wallace L; Mehrabi S.; Bacanamwo M.; Yao X.; Aikhionbare F. Expression of mitochondrial genes MT-ND1, MT-ND6, MT-CYB, MT-COI, MT-ATP6, and 12S/MT-RNR1 in colorectal adenopolyps. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016, 37 (9): 12465-12475
Guo Y.; Fu W.; Chen H.; Shang C.; Zhong M. miR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regµlation of the S100A8 protein. Oncology Reports. 2012, 27 (4): 1097-1103.
Parikh A.; Lee C.; Joseph P.; Marchini S.; Baccarini A.; Kolev V.; Romualdi C.; Fruscio R.; Shah H.; Wang F.; et al. microRNA-181a has a critical role in ovarian cancer progression through the regµlation of the epithelial-mesenchymal transition. Nature Communications. 2014, 5: 2977.
Ma Z.; Kong X.; Cui G.; Ren C.; Zhang Y.; Fan S.; Li Y. Expression and clinical significance of miRNA-34a in colorectal cancer. Asian Pacific Journal of Cancer Prevention: APJCP. 2014, 15 (21): 9265-9270.
Mehrabi S.; Akwe J.; Adams G.; Grizzle W.; Yao X.; Aikhionbare F. Analysis of mtDNA sequence variants in colorectal adenomatous polyps. Diagn Pathol. 2010, 5 (1): 66.
Mehrabi S.; Wallace L.; Cohen S.; Yao X.; Aikhionbare F. Differential Measurements of Oxidatively Modified Proteins in Colorectal Adenopolyps. Int J Clin Med. 2015, 6 (4): 288-299.
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., Abete, P. Oxidative stress, aging, and diseases. Clinical Interventions in Aging. 2018, 13: 757–772.
Bandiera S.; Matégot R.; Girard M., Demongeot J.; Henrion-Caude A. MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radical Biology and Medicine. 2013, 64: 12–19.
He J.; Jiang B.; Interplay Between Reactive Oxygen Species and MicroRNAs in Cancer. Current Pharmacology Reports. 2016, 2 (2): 82-90.
Zeng M.; Zhu L.; Li L.; Kang C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cellular & Molecular Biology Letters. 2017, 22 (1): 12.
Lu K.; Wang J.; Song Y.; Zhao S.; Liu H.; Tang D.; Pan B.; Zhao H.; Zhang Q. miRNA-24-3p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting p27Kip1. Oncology Reports. 2015, 34 (2): 995-1002.
Xu H.; Zhu J.; Hu C.; Song H.; Li Y. Inhibition of microRNA-181a may suppress proliferation and invasion and promote apoptosis of cervical cancer cells through the PTEN/Akt/FOXO1 pathway. Journal of Physiology and Biochemistry. 2016, 72 (4): 721-732.
Tong S.; Liu J.; Wang X.; Qu L. microRNA-181 promotes prostate cancer cell proliferation by regµlating DAX-1 expression. Experimental and Therapeutic Medicine. 2014, 8 (4): 1296-1300.
Ji D.; Chen Z,; Li M.; Zhan T.; Yao Y.; Zhang Z.; Xi J.; Yan L.; Gu J. MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1. Molecµlar Cancer. 2014, 13 (1): 86.
Choudhury A.; Singh K.; Mitochondrial determinants of cancer health disparities. Seminars in Cancer Biology. 2017, 47: 125-146.
Wei Z.; Su W.; Lou H.; Duan S.; Chen G. Trafficking pathway between plasma membrane and mitochondria via clathrin-mediated endocytosis. Journal of Molecular Cell Biology. 2018, 10 (6), 539–548.
Cui Y.; Wang Y.; Liu M.; Qiu L.; Xing P.; Wang X.; Ying G.; Li B. Determination of glucose deficiency-induced cell death by mitochondrial ATP generation-driven proton homeostasis. J Mol Cell Biol. 2017, 9 (5): 395-408.
Kwak S.; Yoo J.; An H.; Bae I.; Park M.; Kim J.; Han Y. miR-5003-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization and direct targeting of E-cadherin. J Mol Cell Biol. 2016, 8 (5): 372-383.
Duarte F.; Palmeira C.; Rolo A. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel). 2014, 5 (4): 865-886.
Wallace L.; Cherian A.; Adamson P.; Bari S.; Banerjee S.; Flood M.; Simien M.; Yao X.; Aikhionbare F. Comparison of Pre- and Post-translational Expressions of COXIV-1 and MT-ATPase 6 Genes in Colorectal Adenoma-Carcinoma Tissues. J Carcinog Mutagen. 2018, 9 (2): 319.
Zhang X.; Schµlze P. MicroRNAs in heart failure: Non-coding regµlators of metabolic function. Biochimica et Biophysica Acta. 2016, 1862 (12): 2276-2287.
Qu A.; Du L.; Yang Y.; Liu H.; Li J.; Wang L.; Liu Y.; Dong Z.; Zhang X.; Jiang X.; et al. Hypoxia-Inducible MiR-210 Is an Independent Prognostic Factor and Contributes to Metastasis in Colorectal Cancer. PLoS ONE. 2014, 9 (3): e90952.
Xie X.; Wu W.; Liang L.; Han S.; Chen T.; Pan S.; Xue M.; Li S. Prognostic role of microRNA-210 in various carcinomas: a meta-analysis. International Journal of Clinical and Experimental Medicine. 2015, 8 (9): 15283-15289.
Huang Z.; Huang D.; Ni S.; Peng Z.; Sheng W.; Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer. 2010, 127 (1): 118-126.
Pfeffer S.; Yang C.; Pfeffer L. The Role of miR‐21 in Cancer. Drug Development Research. 2015, 76 (6): 270-277.
Wu C.; Ng S.; Dong Y.; Ng S.; Leung W.; Lee C.; Wong Y.; Chan F.; Yu J.; Sung J. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012, 61 (5): 739.
Chen X.; Jiang Y.; Huang Z.; Li D.; Chen X.; Cao M.; et al. miRNA-378 reverses chemoresistance to cisplatin in lung adenocarcinoma cells by targeting secreted clusterin. Sci Rep. 2016, 6: 19455.
Li B.; Wang Y.; Li S.; He H., Sun F.; Wang C.; et al. Decreased expression of miR-378 correlates with tumor invasiveness and poor prognosis of patients with glioma. Int J Clin Exp Pathol. 2015, 8: 7016–21.
Shukla G.; Singh J.; Barik S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol. 2011, 3 (3): 83-92.
Browse journals by subject